Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

If α,β  are solution of equation acosθ+bsinθ=c Then show that

i)  sinα+sinβ=2bca2+b2

ii) cosα+cosβ=2aca2+b2

iii) cosαcosβ=c2b2a2+b2

iv)  sinαsinβ=c2a2a2+b2

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given acosθ+bsinθ=c

acosθ=cbsinθ

Squaring on both sides a2cos2θ=(cbsinθ)2

a21sin2θ=(cbsinθ)2

a2a2sin2θ=c2+b2sin2θ2bcsinθ

c2+b2sin2θ2bcsinθ+a2sin2θa2=0

a2+b2sin2θ2bcsinθ+c2a2=0  (1)

Given α,β are solutions of equation (1)

Let sinα,sinβ   be the roots of (1)

 

i)  sinα+sinβ=2bca2+b2

ii) cosα+cosβ=2aca2+b2

iii) cosαcosβ=c2b2a2+b2

iv) sinαsinβ=c2a2a2+b2

again consider acosθ+bsinθ=c

bsinθ=cacosθ

Squaring on both sides b2sin2θ=(cacosθ)2

b21cos2θ=(cacosθ)2

b2b2cos2θ=c2+a2cos2θ2accosθ

c2+a2ccos2θ2accosθ+b2cos2θb2=0

a2+b2cos2θ2accosθ+c2b2=0   -  (2)

Given α,β are solutions of equation - (2)

Let cosα,cosβ  be the roots of equation - (2)

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon