Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If α,β  are solution of equation acosθ+bsinθ=c Then show that

i)  sinα+sinβ=2bca2+b2

ii) cosα+cosβ=2aca2+b2

iii) cosαcosβ=c2b2a2+b2

iv)  sinαsinβ=c2a2a2+b2

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given acosθ+bsinθ=c

acosθ=cbsinθ

Squaring on both sides a2cos2θ=(cbsinθ)2

a21sin2θ=(cbsinθ)2

a2a2sin2θ=c2+b2sin2θ2bcsinθ

c2+b2sin2θ2bcsinθ+a2sin2θa2=0

a2+b2sin2θ2bcsinθ+c2a2=0  (1)

Given α,β are solutions of equation (1)

Let sinα,sinβ   be the roots of (1)

 

i)  sinα+sinβ=2bca2+b2

ii) cosα+cosβ=2aca2+b2

iii) cosαcosβ=c2b2a2+b2

iv) sinαsinβ=c2a2a2+b2

again consider acosθ+bsinθ=c

bsinθ=cacosθ

Squaring on both sides b2sin2θ=(cacosθ)2

b21cos2θ=(cacosθ)2

b2b2cos2θ=c2+a2cos2θ2accosθ

c2+a2ccos2θ2accosθ+b2cos2θb2=0

a2+b2cos2θ2accosθ+c2b2=0   -  (2)

Given α,β are solutions of equation - (2)

Let cosα,cosβ  be the roots of equation - (2)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring