Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If  α,β  are two distinct real roots of the equation ax3+x1a=0,(a1,0)  none of which is equal to unity, then the value of  limx(1/α)(1+a)x3x2a(e1ax1)(x1)  is   al(kα-β)α. Find the value of  kl.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

ax3+x1a=0 ax31+(x1)=0(x1)ax2+ax+(a+1)=0

 It is given that α.,β are two distinct roots of ax3+x1a=0 or 

 Therefore, α,β are roots of  ax2+ax+(a+1)=0 and hence, 1α,1β are roots of  (a+1)x2+ax+a=0.  (a+1)x1αx1β=(a+1)x2+ax+a

limx1/α(1+a)x3x2ae1αx1(x1)=limx1/αax31+x2(x1)e1αx1(x1)=limx1/αax2+x+1+x2e1αx1=limx1/α(a+1)x2+ax+a1αx= =limx1/α(a+1)x1α(x-1β)1αx =a+11α(1α-1β)alα(kαβ)=(a+1)α2β(αβ)

 alα(kαβ)=(a+1)aα(a+1)(αβ) αβ=a+1a l(kαβ)=(αβ)l=k=1kl=1

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon