Q.

If  α,β  are two distinct real roots of the equation ax3+x1a=0,(a1,0)  none of which is equal to unity, then the value of  limx(1/α)(1+a)x3x2a(e1ax1)(x1)  is   al(kα-β)α. Find the value of  kl.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

ax3+x1a=0 ax31+(x1)=0(x1)ax2+ax+(a+1)=0

 It is given that α.,β are two distinct roots of ax3+x1a=0 or 

 Therefore, α,β are roots of  ax2+ax+(a+1)=0 and hence, 1α,1β are roots of  (a+1)x2+ax+a=0.  (a+1)x1αx1β=(a+1)x2+ax+a

limx1/α(1+a)x3x2ae1αx1(x1)=limx1/αax31+x2(x1)e1αx1(x1)=limx1/αax2+x+1+x2e1αx1=limx1/α(a+1)x2+ax+a1αx= =limx1/α(a+1)x1α(x-1β)1αx =a+11α(1α-1β)alα(kαβ)=(a+1)α2β(αβ)

 alα(kαβ)=(a+1)aα(a+1)(αβ) αβ=a+1a l(kαβ)=(αβ)l=k=1kl=1

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon