Questions

# If  $A=\left[\begin{array}{cc}\mathrm{sin}\theta & -\mathrm{cos}\theta \\ \mathrm{cos}\theta & \mathrm{sin}\theta \end{array}\right]$ and  $B=\left[\begin{array}{cc}\mathrm{cos}\theta & \mathrm{sin}\theta \\ -\mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right]$, then  $\left(\mathrm{sin}\theta \right)A+\left(\mathrm{cos}\theta \right)B$

## Remember concepts with our Masterclasses.

80k Users
60 mins Expert Faculty Ask Questions
a
$\left[\begin{array}{cc}1& 0\\ 1& 0\end{array}\right]$
b
$\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]$
c
$\left[\begin{array}{cc}1& 1\\ 1& 1\end{array}\right]$
d
$\left[\begin{array}{cc}0& 0\\ 0& 0\end{array}\right]$

Check Your Performance Today with our Free Mock Tests used by Toppers!

detailed solution

Correct option is B

$\begin{array}{l}\left(\mathrm{sin}\theta \right)\left[\begin{array}{cc}\mathrm{sin}\theta & -\mathrm{cos}\theta \\ \mathrm{cos}\theta & \mathrm{sin}\theta \end{array}\right]+\left(\mathrm{cos}\theta \right)\left[\begin{array}{cc}\mathrm{cos}\theta & \mathrm{sin}\theta \\ -\mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right]\\ =\left[\begin{array}{cc}{\mathrm{sin}}^{2}\theta +{\mathrm{cos}}^{2}\theta & -\mathrm{sin}\theta \mathrm{cos}\theta +\mathrm{cos}\theta \mathrm{sin}\theta \\ \mathrm{sin}\theta \mathrm{cos}\theta -\mathrm{cos}\theta \mathrm{sin}\theta & {\mathrm{sin}}^{2}\theta +{\mathrm{cos}}^{2}\theta \end{array}\right]=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]\end{array}$