Q.

If  both the roots of the quadratic equation  x2mx+4=0  are real and distinct and they lie in the interval  [1,5] , then m lies in the interval : 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

(4,5)

b

(3,4)

c

(5,6)

d

(5,4)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given quadratic equation is  x2mx+4=0
Both the roots are real and distinct.
So, discriminant  b24ac>0 .
    m24.1.4>0
 (m4)(m+4)>0;m(,4)(4,)                -----------------(i)
Since, both roots lies in  [1,5]
 1<b2a<5;m2(1,5)
m(2,10)                                                                                    ----------------(ii)
And  f(1)>0(1m+4)>0m<5
  m(,5)                                                                   ----------------(iii)
And  f(5)>0(255m+4)>0m<295
 m(,295)                                                                 ----------------(iv)
From (i), (ii), (iii) and (iv), m    (4,5)

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If  both the roots of the quadratic equation  x2−mx+4=0  are real and distinct and they lie in the interval  [1,5] , then m lies in the interval :