Q.

If  cos5x+cos5(x+2π3)+cos5(x+4π3)=0, then the number of solution(s) in  [0,2π]  is equal to.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

(eix+eix)5+(ωeix+ω2eix)5+(ω2eix+ωeix)5=0         5C0e5ix+5C1e3ix+5C2eix+.......+5C5e5ix           +5C0ω2e5ix+5C1e3ix+5C2ωeix+.......+5C5ωe5ix        +5C0ωe5ix+5C1e3ix+5C2ω2eix+.......+5C5ω2e5ix

=0      5C1e3ix+5C4e3ix=0    2cos3x=0  cos3x=0          3x=(2n+1)π2,nI

x={π6,π2,5π6,7π6,3π2,11π6}

 Total number of solution=6.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If  cos5x+cos5(x+2π3)+cos5(x+4π3)=0, then the number of solution(s) in  [0,2π]  is equal to.