Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If d1, d2,d3are the diameters of the three inscribed circles of a triangle ABC, then d1d2+d2d3+d3d1 is equal to _________.


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

ab+bc+ca

b

ab+bc+ca

c

(a+b+c)2

d

a2+b2+c2 

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

According to the problem, we are given that d1, d2,d3 are the diameters of the three inscribed circles of a triangle ABC. We need to find the value of d1d2+d2d3+d3d1 .
Let us draw a figure representing the given information.
Question ImageWe know that the ex-radii of the triangle is defined as r1=s-a, r2=s-b and r3=s-c.
Where a, b, c are the sides of the triangle,
s = semi perimeter of the triangle = a+b+c2---(1).
Δ = Area of the triangle = s(s-a)(s-b)(s-c)---(2).
We know that the diameter of the circle is twice the radius of the circle.
So, we get d1=2r1=2s-a,  d2=2r2=2s-b and d3=2r3=2s-c. Let us substitute these values in d1d2+d2d3+d3d1.
d1d2+d2d3+d3d1=((2s-a)(2s-b))+(( 2s-b)( 2s-c))+(( 2s-c)( 2s-a))
d1d2+d2d3+d3d1=(42s-as-b)+42s-bs-c+42s-cs-a---(3).
Let us substitute equation (2) in equation (3).
d1d2+d2d3+d3d1=(4s(s-a)(s-b)(s-c)2s-as-b)+ 4ss-as-bs-c2s-bs-c+4ss-as-bs-c2s-cs-a
d1d2+d2d3+d3d1=(4s(s-a)(s-b)(s-c)s-as-b)+(4s(s-a)(s-b)(s-c)s-bs-c)+(4s(s-a)(s-b)(s-c)s-cs-a)
d1d2+d2d3+d3d1=4s(s−c)+4s(s−a)+4s(s−b)
d1d2+d2d3+d3d1=4s(s−c+s−b+s−a)
d1d2+d2d3+d3d1=4s(3s−a−b−c).
d1d2+d2d3+d3d1=4s(3s−(a+b+c)).
d1d2+d2d3+d3d1=4s(3s−2( a+b+c2)) ---(4).
Let us substitute equation (1) in equation (4).
d1d2+d2d3+d3d1=4s(3s−2s).
d1d2+d2d3+d3d1=4s(s).
d1d2+d2d3+d3d1=4s2
d1d2+d2d3+d3d1=4(a+b+c2)2
d1d2+d2d3+d3d1=4×(a+b+c)24
d1d2+d2d3+d3d1=(a+b+c)2
So, we have found the value of d1d2+d2d3+d3d1  as (a+b+c)2
So, the correct answer is “Option 3”.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring