Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If dydx+2ytanx=sinx,0<x<π2andy(π3)=0,  then, the maximum value of y(x) is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1/8

b

3/4

c

1/4

d

3/8

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given,   dydx+2y  tan   x=sinx,0<x<π2
Here  p=2   tanxandQ=sinx
IF=epdx=e2tanxdx e2log|secx|=sec2x y   ×IF=Q×IF  dx y×sec2x=sin  x×sec2x  dx =tanxsecxdx     y×sec2  x=sec  x+c 0×sec2π3=secπ3+C O=2+c            c=2       ysec2x=secx2       y=cosx2cos2  x        y=2(cos2x12cos  x)        y=2[cos2x12cosx+(14)2(14)2]         y=2[(cosx14)2116]           y=182(cosx14)2 
Minimum value of  cosx14  is  0
Maximum value of  y=180=18
 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring