Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If e1 and e2 are the roots of the equation x2ax+2=0, then match the following.

COLUMN - ICOLUMN - II
(A) If e1 and e2 are the eccentricities of the ellipse and hyperbola, respectively then the values of a are(p) 6
(B) If both e1 & e2 are the eccentricities of the hyperbolas, then values of a are(q) 52
(C) If e1 and e2 are eccentricities of hyperbola and conjugate hyperbola, then values of a are(r) 22
(D) If e1 is the eccentricity of the hyperbola for which there exists infinite points from which perpendicular tangents can be drawn and e2 is the eccentricity of the hyperbola in which no such points exist then the values of a are(s) 5

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

A-qs; B-q,; C-r; D-pq

b

A-ps; B-qr,; C-r; D-ps

c

A-s; B-qr,; C-s; D-ps

d

A-ps; B-q,; C-r; D-rs

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

e1,e2 are roots of x2ax+2=0

 A) e1<1<e2, coefficient of x2=1>0f(1)<0

1a+2<0a>3a=5,6

 B) e1>1,e2>1 roots greater than 1

Δ>0,af(1)>0a(α,2)(2,α),a<3a(2,3)

 C) e12+e22=e12e22e1+e222e1e2=e1e22

a28=0a=22

 D) e1>2,e2<2f(2)<0a>22

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring