Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If f(x)={sin[x2]πx23x18+ax3+b0x12cosπx+tan1x1<x2 is differentiable function in  0,2, where [.] denotes the greatest integer function, then

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

a=16,b=π4

b

a=16,b=π4

c

a=16,b=π4136

d

a=16,b=π4136

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

sin[x2]π=0  for  0x1 Hence,  f(x)={ax3+b,0x12cosπx+tan1x,1x2

f(x) is continuous and differentiable at  x=1

limx1f(x)=limx1+f(x)=f(1) a+b=2+π4=a+b a+b=2+π4(1)

ALso,  limx1f(x)f(1)x1=limx1+f(x)f(1)x1 limx1(ax3+b)(a+b)x1=limx1+(2cosπx+tan1x)(a+b)x1 3a=limx1+2πsinπx+11+x2 3a=12  or  a=16 b=π4136

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon