Q.

If f(x)={sin[x2]πx23x18+ax3+b0x12cosπx+tan1x1<x2 is differentiable function in  0,2, where [.] denotes the greatest integer function, then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

a=16,b=π4

b

a=16,b=π4

c

a=16,b=π4136

d

a=16,b=π4136

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

sin[x2]π=0  for  0x1 Hence,  f(x)={ax3+b,0x12cosπx+tan1x,1x2

f(x) is continuous and differentiable at  x=1

limx1f(x)=limx1+f(x)=f(1) a+b=2+π4=a+b a+b=2+π4(1)

ALso,  limx1f(x)f(1)x1=limx1+f(x)f(1)x1 limx1(ax3+b)(a+b)x1=limx1+(2cosπx+tan1x)(a+b)x1 3a=limx1+2πsinπx+11+x2 3a=12  or  a=16 b=π4136

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon