Q.

If (h, k) be the point to which the origin has to be shifted in order to get the transformed equation of y2  4x + 6y + 17 = 0 as y2 = 4ax, then h2 + k2 =

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

11

b

1

c

13

d

25

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given Original Equation y2-4x+6y+17=0

Sub x=X+h, y=Y+k

Transformed equation is 

      (Y+k)2-4(X+h)+6(Y+k)+17=0  Y2+k2+2kY-4X-4h+6Y+6k+17=0  Y2+(2k+6)Y-4X-4h+6k+k2+17=0   Compare with y2=4ax    we get 2k+6=0 and -4h+6k+k2+17=0     -(1)  k=-3      sub k=-3 in  (1)      -4h+6(-3)+(-3)2+17=0  -4h-18+9+17=0  -4h=-8  h=2 Now h2+k2=4+9=13

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon