Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If α  is a real root of the equation  x5x3+x2=0, then find  the value of  [α6]. (For any  real number a,[a] represent the greatest integer not exceeding a) 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

[α6]=2

b

[α6]=3

c

[α6]=4

d

[α6]=5

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Suppose a is a real root of the given equation. Then
α5α3+α2=0.    …(1)
This gives  α5α3+α1=1 and hence   (α1)(α4+α3+1)  = 1. Observe that 
 a4+a3+132a2+a3=a2(a+2)
If 1a<0, then a+2>0, giving a2(a+2)>0 and hence (a1)(a4+a3+1)<0
If a< -1, then α4+α3=α3(α+1)>0 and hence  α4+α3+1>0.
 This again gives (a1)(a4+a3+1)<0.
The above reasoning shows that for a<0, we have a5a3+a1<0 and hence cannot be  equal to 1. We conclude that a real root a of x5x3+x2=0 is positive 
(obviously α0 ).
Now using a5a3+a2=0, we get
 α6=α4α2+2α
The statement [α6] = 3 is equivalent to  3α6<4.
Consider α4α2+2α<4 . Since  α>0, this is equivalent to  α5α3+2α1<4α.  Using the relation (1), we can write  2α2α+2<4α or 2α25α+2<0 . Treating this  as a quadratic, we get this is equivalent to 12<α<2 . Now observe that if α2  then  1=(α1)(α4+α3+1)25 which is impossible. If  0<α12, then 1 =   (α1)(α4+α3+1)<0   which again is impossible. We conclude that 12<α<2 .
Similarly,α4α2+2α3   is equivalent to α5α3+2α23α0  which is equivalent  to  2α24α+20. But this is 2(α1)20  which is valid. Hence 3α6<4  and we  get [α6]=3.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring