Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If limx0  asinxbx+cx2+x32x2loge(1+x)2x3+x4 exists and is  finite then  a+b+c=____

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

36

b

12

c

24

d

6

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

limx0asinxbx+cx2+x32x2log(1+x)2x3+x4

=limx0axx33!+x55!bx+cx2+x32x2xx22+x33x442x3+x4

=limx0(ab)x+cx2+a3!+1x3+a5!x5+23x512x6+.

=limx0(ab)+cx+a3!+1x2+a5!x4+.23x412x5+. 

If this limit exists, then  

ab=0,c=0,a3!+1=0a=b=6and c=0

For this values of a, b, c, the limit is given by 

limx065!x4+23x412x5+=65!×32=340

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring