Q.

If limx0  asinxbx+cx2+x32x2loge(1+x)2x3+x4 exists and is  finite then  a+b+c=____

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

36

b

12

c

24

d

6

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

limx0asinxbx+cx2+x32x2log(1+x)2x3+x4

=limx0axx33!+x55!bx+cx2+x32x2xx22+x33x442x3+x4

=limx0(ab)x+cx2+a3!+1x3+a5!x5+23x512x6+.

=limx0(ab)+cx+a3!+1x2+a5!x4+.23x412x5+. 

If this limit exists, then  

ab=0,c=0,a3!+1=0a=b=6and c=0

For this values of a, b, c, the limit is given by 

limx065!x4+23x412x5+=65!×32=340

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If limx→0  asinx−bx+cx2+x32x2loge(1+x)−2x3+x4 exists and is  finite then  a+b+c=____