Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If minimum value of term free from x for

xsinθ+1xcosθ16is L1 in θπ8,π4 and L2 in θπ16,π8,then

L2L1=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

b

c

d

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The general term in the expansion of

xsinθ+1xcosθ16is

     Tr+1=16Crxsinθ16r1xcosθrTr+1=16Cr1sinθ16r1cosθrx162r

For this to be independent of x, we must have 

16 - 2r = 0 => r = 8.

Putting r = 8 , we obtain 

           T9=16C81sinθ81cosθ8 T9=16C81sinθcosθ8=16C8×281sin82θ

For θπ8,π4,sin82θ 0 is maximum at θ=π4 and hence T9 is

minimum at θ=π4

 L2=16C8×28×1sin8π4=16C8×28×(2)8=16C8×212

Hence L2L1= 16C8×212 16C8×28=24=16

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring