Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

If n1  denotes number of points of non-differentiability of f(x)=cos(2x1)π2.|x24x5|+|x5+x3|+x.e|x|
  and  n2 denotes number of points of discontinuity of  g(x)=sgn(sin2xsinx1),x(0,4π).  [Note : sgn  x  denotes the signum function of x. ]   Find the value of (n1+n2).   
 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 4.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

 
f(x)=cos(2x1)π2differentiable  atx=-1.5  andvalue=0  atthese  points.|(x+1)(x5)|continuousat  x=5,5+x2|x|(x2+1)differentiableat  x=0+xdifferentiableat  x=0  andhas  value=0at  x=0.e|x|continousat  x=0differentiable  on  R
n1=0 g(x)=sgn(sin2xsinx1)is discontinuous where
(sin2xsinx1)=0 sinx=1±52sinx=152
i.e., it changes sign 4 times.
n2=4n1+n2=4
Question Image
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If n1  denotes number of points of non-differentiability of f(x)=cos(2x−1)π2.|x2−4x−5|+|x5+x3|+x.e|x|  and  n2 denotes number of points of discontinuity of  g(x)=sgn(sin2x−sinx−1),x∈(0,4π).  [Note : sgn  x  denotes the signum function of x. ]   Find the value of (n1+n2).