Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If the area of a circle is equal to the sum of the areas of two circles with diameters of 10 cm and 24 cm, then find the diameter of the larger circle (in cm).

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

34 cm

b

26 cm

c

42 cm

d

54  cm

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given:

The diameter of the first circle = 10 cm

Since the diameter is always twice the radius.

So, radius, r1Diameter2

                       = 102 cm = 5 cm

 

And diameter of the second circle = 24 cm

So, radius, r2Diameter2

                       = 242 cm = 12 cm

 

Now, we know the area of a circle is πR2.

So, the area of the first circle = πr12

And, the area of the second circle = πr22 

The sum of the areas = πr12 + πr22

                                      = π(r12 + πr22)

Substituting the values, we get:

π(52 + 122) 

π×(25 + 144) 

169π cm2 

 

According to the question, the sum of the areas of the two circles is the area of the larger circle.

So, the area of the large circle = 169π cm2

Let its radius be R cm.

πR2 = 169π

R2 = 169

R = 169  

R = 13 cm

 

Thus, the diameter = 2×R

                                  = 2×13 cm = 26 cm

 

Hence, the diameter will be 26 cm.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring