Q.

If the domain of the function log5(18x - x2 - 77) is (α,β) and the domain of the function
log(x1)2x2+3x2x23x4 is (γ,δ), then α2+β2+γ2 is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

174

b

179

c

186

d

195

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

let f1(x)=log518xx27718xx277>0 x218x+77<0 x(7,11)   α=7,β=11Let f2(x)=log(x1)2x2+3x2x23x4x1>0,x11 and 2x2+3x2x23x4>0 x>1,x2 and (2x1)(x+2)(x4)(x+1)>0x>1,x2
Question Image
x(4,)γ=4α2+β2+γ2=49+121+16
                            = 186

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If the domain of the function log5(18x - x2 - 77) is (α,β) and the domain of the functionlog(x−1)⁡2x2+3x−2x2−3x−4 is (γ,δ), then α2+β2+γ2 is equal to :