Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

if the integral 5tanxtanx2dx=x+alog |sinx2cosx|+k, then a is equal to 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

-1

b

-2

c

1

d

2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given integral 5tanxtanx2dx

To find The value of a ', if 5tanxtanx2dx 

=x+alog|sinx2cosx|+k ---i

Now, let us assume that I=5tanxtanx2dx

On multiplying by cos x in numerator and
denominator, we get 

I=5sinxsinx2cosxdx

This special integration requires special substitution
of type

Nr=ADr+BdDrdx,A and B are constant.

 Let 5sinx=A(sinx2cosx)+B(cosx+2sinx)

0cosx+5sinx=(A+2B)sinx+(B2A)cosx

A+2B=5 and B2A=0

On solving the above two equations in A and B, we get

A=1 and  B=2 

5sinx=(sinx2cosx)+2(cosx+2sinx)  I=5sinxsinx2cosxdx=(sinx2cosx)+2(cosx+2sinx)(sinx2cosx)dx=sinx2cosxsinx2cosxdx+2(cosx+2sinx)(sinx2cosx)dx=1dx+2d(sinx2cosx)(sinx2cosx)

=x+2log|(sinx2cosx)|+k   ----ii

where, k is the constant of integration.
Now, by comparing the value of I in Eqs. (i) and (ii),

we get .

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring