Q.

If the normal at 'θ' on the hyperbola x2a2y2b2= 1 meets the tansverse axis at G, then AG.A'G =

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

a2(e4sec2θ-1)

b

a2(e4sec2θ+1)

c

b2(e4sec2θ-1)

d

none 
 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x2a2-y2b2=1   verties are A=(a, 0), A1=(-a, 0) Equation of normal at P(θ) is axsecθ+bytanθ=a2+b2 It cuts x-axis at G=(a2+b2)secθa, 0 Now (A G) (A G1)=(a2+b2secθ)a-a (a2+b2)secθa+a                                  =a2+a2(e2-1)secθa-aa2+a2(e2-1)secθa+a                                 =(ae2secθ-a) (ae2secθ+a)                                 =a2e4sec2θ-a2                                 =a2(e4sec2θ-1)

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If the normal at 'θ' on the hyperbola x2a2–y2b2= 1 meets the tansverse axis at G, then AG.A'G =