Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

If the normal at 'θ' on the hyperbola x2a2y2b2= 1 meets the tansverse axis at G, then AG.A'G =

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

a2(e4sec2θ-1)

b

a2(e4sec2θ+1)

c

b2(e4sec2θ-1)

d

none 
 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x2a2-y2b2=1   verties are A=(a, 0), A1=(-a, 0) Equation of normal at P(θ) is axsecθ+bytanθ=a2+b2 It cuts x-axis at G=(a2+b2)secθa, 0 Now (A G) (A G1)=(a2+b2secθ)a-a (a2+b2)secθa+a                                  =a2+a2(e2-1)secθa-aa2+a2(e2-1)secθa+a                                 =(ae2secθ-a) (ae2secθ+a)                                 =a2e4sec2θ-a2                                 =a2(e4sec2θ-1)

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If the normal at 'θ' on the hyperbola x2a2–y2b2= 1 meets the tansverse axis at G, then AG.A'G =