Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If the solution of the differential equation dydx=(x+y)2(x+2)(y2) is (x+2)m1+k(y2)x+2=Ce2(y2)x+2 where m,kN and C and C is arbitrary constant then m+k equals.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

dydx=(x+y)2(x+2)(y2)

On putting X=x+2 and Y=y2 , the given differential equation reduces to 

dYdX=(X2+Y+2)XY=(X+Y)2XY put Y=VXdYdX=V+XdVdXV+XdVdX=(1+V)2VV2V+1dV=dXX111+2VdV=2dXX

integrating, 111+2VdV=2dXX

V12ln(1+2V)=2lnX+CX41+2YX=Ke2Y/X

where, X=x+2, and Y=y2 and m=4,k=2

m+k=6

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon