Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If the sum of all the solutions of the equation (2sec2xcos169x)sec x(cosx3+2tan xsec x)tan x=sinx3;x[9π,9π]   is  kπ, then  2k is equal to :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

2sec3xcos169xsecx2tan2xsecx=sinx3+cosx3tanx

2secxcos169xsecx=sinx3cosx+cosx3sinxcosx       2cos169x=sin4x3      sin4x3+cos16x9=2

sin4x3=1             cos16x9=1

4x3=(4n+1)π2             16x9=2mπ

x=(4n+1)3π8            x=9mπ8

x=3π8,15π8,27π8,      x=0,9π8,18π8,27π8

Sum of common solution

=27π8+63π89π845π8=36π8kπ=36π8k=368=4.50

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
If the sum of all the solutions of the equation (2sec2x−cos169x)sec x−(cosx3+2tan x⋅sec x)tan x=sinx3;x∈[−9π,9π]   is  kπ, then  2k is equal to :