Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of (x+a)n  are  A and B respectively, then the value of (x2a2)n  is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

A2B2

b

A2+B2

c

4AB

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given expansion (x+a)n  then we know that its expansions

 

(x+a)n=nC0xn+nC1xn1a   +nC2xn2a2+....+nCnan        … (1)

 

(x+a)n=(nC0xn+nC2xn2a2+...) +(nC1xn1a+nC3xn3a3+...)               … (2)

A=(nC0xn+nC2xn2a2+...) (odd number terms),B=(nC1xn1a+nC3xn3a3+...) (even number terms)

 

(x+a)n=A+B...(2) , where

              A=nC0xn+nC2xn2a2+...

 

And   B=nC1xn1a+nC3xn3a3+...

 

Changing a to a  in (x+a)n Eq (i) we get

 

(xa)n=AB                                                …(3)   

  

Multiplying Eq(2) and Eq(3), we get

 

(x+a)n(xa)n=(A+B)(AB)

 

     (x2a2)n=A2B2 .

 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon