Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If the sum of two-unit vectors a and b is a unit vector, show that the magnitude of their difference is 3

OR

Show that area of the parallelogram whose diagonal are given by a and b is a×b2 . Also find the area of the parallelogram whose diagonals are 2i^-j^+k^ and i^+3j^-k^.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Assume that,

c=aˆ+bˆ

Then, according to given condition c is a unit vector, i.e. |c|=1.

To show |aˆ-bˆ|=3

Consider, c=aˆ+bˆ

 |c|=|aˆ+bˆ|  1=|aˆ+bˆ| |aˆ+bˆ|2=1

 (aˆ+bˆ)(aˆ+bˆ)=1 |aˆ|2+2aˆbˆ+|bˆ|2=1 1+2aˆbˆ+1=1  2aˆbˆ=-1(i)

Now consider,  |aˆ-bˆ|2=(aˆ-bˆ)(aˆ-bˆ)

=|aˆ|2-2aˆbˆ+|bˆ|2 =1-(-1)+1=3

 |aˆ-bˆ|=3

Which have proven.

OR

Assume that ABCD be a parallelogram such that,

Question Image

AB=p,AD=qBC=q

AC=AB+BC=p+q=a .(i) [By triangle law of vectors]

And BD=BA+AD=-p+q=b

Adding (i) and (ii), we get

a+b=2q

Subtracting (ii) from Eq. (i), we get

a-b=2p p=12(a-b)

Now, p×q=14(a-b)×(a+b)

=14(a×a+a×b-b×a-b×b)

So, the  area of a parallelogram ABCD=|p×q|=12|a×b|

Now, area of a parallelogram, whose diagonals are 2i-j+k and i+3j-k˙

=12|(2i-j+k)×(i+3j-k)|

=12iˆjˆkˆ2-1113-1

=12|i(1-3)-j(-2-1)+k(6+1)|

=12|-2iˆ+3jˆ+7kˆ|=124+9+49=1262 sq.unitsTherefore, the area of parallelogram ABCD is 12|a×b| have proven and the Area of parallelogram is 1262unit 2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring