Q.

If α0 is a real root of the cubic equation ax3+bx2+bx+a=0 then the value of limx1αtanax3+bx2+bx+a(αx1) is where a0,bR

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

α(α+1)2(1α)α2

b

α1α2α

c

α(1+α)2(1α)α3

d

α(α+1)2α2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

If α0 is a real root of the  reciprocal equation ax3+bx2+bx+a=0 then 1α is also a root

 Clearly x=1  is a root since f(-1)=0

limx1αtanax3+bx2+bx+a(αx1)

=limx1αtana(x+1)(xα)x1α(αx1) =limx1αtana(x+1)(xα)x1αa(x+1)(xα)(x1α)a(x+1)(xα)α =aα(1α+1)(1αα)=a1+α1-α2α3=a1+α1-α1+αα3=a1+α21-αα3

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon