Q.

If 1log2a+1log4a+1log8a+1log16a+ to n terms =n(n+1)2k, then k=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

loga2

b

loga4

c

log2a

d

log4a

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

If 1log2a+1log4a+1log8a+1log16a+ to n terms =n(n+1)2k, then k=

loga2+loga4+loga8+ to n terms =n(n+1)2k

loga2+loga22+loga23+ to n terms =n(n+1)2k

loga2+2loga2+3loga2+ to n terms =n(n+1)2k

loga2(1+2+3++n) =n(n+1)2k

loga2(n(n+1)2)=n(n+1)2k

loga2=1k

Hence k=log2a

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon