Q.

If A=111102311, find A-1. Hence, solve the system equations x+y+z=6, x+2z=7,
3x+y+z=12

                                                OR

Find the inverse of the following matrix using elementary operations. A=12-2-1300-21

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given : A=111102311

To find A-1, we need cofactors of each element of matrix A.

cofactor of a11=(-1)1+10211=-2

cofactor of a12=(-1)1+21231=-(1-6)=5

cofactor of a13=(-1)1+31031=1

cofactor of a21=(-1)2+11111=0

cofactor of a22=(-1)2+21131=(1-3)=-2

cofactor of a23=(-1)2+31131=-(1-3)=2

cofactor of a31=(-1)3+11102=2

cofactor of a32=(-1)3+21112=-(2-1)=-1

cofactor of a33=(-1)3+31110=-1

So,

cofactor of matrix of A=-2510-222-11

Now, we know that transpose of cofactor matrix A is adj (A).

adj (A)=-2025-2-112-1

For, |A|

|A|=1(0-2)-1(1-6)+(1-0) =-2+5+1 =4 & A-1=1|A| adj (A)

 A-1=14-2025-2-112-1

Now, given system equations are, 

x+y+z=6,   x+2z=7, 3x+y+z=12

Writing the above equation in matrix form

111102311 xyz=6712 AX=B X=A-1B  xyz=14-2025-2-112-1 6712

 xyz=14-12+0+2430-14-126+14-12  xyz=141248  xyz=312

Therefore, solutions are x=3, y=1 and z=2.

                                          OR

We know that A=IA, hence

12-2-1300-21=100010001A 12-205-20-21=100110001 A Applying R2R2+R1 12-20100-21=100112001 A Applying R2R2+2R3 10-2010001=-1-2-4112225 A Applying R1R1+(-2)R2, R3R3+2R2 100010001=326112225 A Applying R1R1+2R3

Therefore, A-1=326112225. Which is the required answer.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon