Q.

If A=123322211, then find A-1 and use it to solve following system of the equation:
x+2y3z=63x+2y2z=32xy+z=2

OR

Using properties of determinants, prove that
(b+c)2    a2    bc(c+a)2    b2    ca(a+b)2    c2    ab=(ab)(bc)(ca)(a+b+c)a2+b2+c2

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

First, we will find,
|A|=det A=123322211=1(22)2(3+4)3(34)=014+21=7
Now, We will find the cofactors of the matrix A:
A11=2211=0,A12=3221=7,A13=3221=7,A21=2311=1,A22=1321=7,A23=1221=5,A31=2322=2,A32=1332=7,A33=1232=4
Therefore, adjoint of matrix A will be given by:
adjA=077175274T=012777754A1=1|A| adj A=17012777754
Now, the system of equations can be reduced in the matrix form AX=B as
Where, X=xyz,B=632
AX=BX=A1Bxyz=17012777754632=1773535=155x=1,y=5 and z=5
Therefore, A1=17012777754 and (x,y,z)=(1,5,5)

OR

Given: 
 L.H.S. =(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab=b2+c2a2bcc2+a2b2caa2+b2c2ab C1C12C3=a2+b2+c2a2bca2+b2+c2b2caa2+b2+c2c2ab c1C1+C2=a2+b2+c2a2bc0b2a2cabc0c2a2abbcR1R2R1,R3R3R1
=(ba)(ca)a2+b2+c2a2bc0b+ac0c+ab(get common (b-a) from R2and (c-a) from RR3)
Expand along column 1
 =a2+b2+c2(ba)(ca)b2ab+c2+ac=(ab)(ba)(ca)(a+b+c)a2+b2+c2= R.H.S  L.H.S. = R.H.S 
Therefore, which has proven.

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon