Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If A=123322211, then find A-1 and use it to solve following system of the equation:
x+2y3z=63x+2y2z=32xy+z=2

OR

Using properties of determinants, prove that
(b+c)2    a2    bc(c+a)2    b2    ca(a+b)2    c2    ab=(ab)(bc)(ca)(a+b+c)a2+b2+c2

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

First, we will find,
|A|=det A=123322211=1(22)2(3+4)3(34)=014+21=7
Now, We will find the cofactors of the matrix A:
A11=2211=0,A12=3221=7,A13=3221=7,A21=2311=1,A22=1321=7,A23=1221=5,A31=2322=2,A32=1332=7,A33=1232=4
Therefore, adjoint of matrix A will be given by:
adjA=077175274T=012777754A1=1|A| adj A=17012777754
Now, the system of equations can be reduced in the matrix form AX=B as
Where, X=xyz,B=632
AX=BX=A1Bxyz=17012777754632=1773535=155x=1,y=5 and z=5
Therefore, A1=17012777754 and (x,y,z)=(1,5,5)

OR

Given: 
 L.H.S. =(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab=b2+c2a2bcc2+a2b2caa2+b2c2ab C1C12C3=a2+b2+c2a2bca2+b2+c2b2caa2+b2+c2c2ab c1C1+C2=a2+b2+c2a2bc0b2a2cabc0c2a2abbcR1R2R1,R3R3R1
=(ba)(ca)a2+b2+c2a2bc0b+ac0c+ab(get common (b-a) from R2and (c-a) from RR3)
Expand along column 1
 =a2+b2+c2(ba)(ca)b2ab+c2+ac=(ab)(ba)(ca)(a+b+c)a2+b2+c2= R.H.S  L.H.S. = R.H.S 
Therefore, which has proven.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring