Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

If A=123322211, then find A-1 and use it to solve following system of the equation:
x+2y3z=63x+2y2z=32xy+z=2

OR

Using properties of determinants, prove that
(b+c)2    a2    bc(c+a)2    b2    ca(a+b)2    c2    ab=(ab)(bc)(ca)(a+b+c)a2+b2+c2

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

First, we will find,
|A|=det A=123322211=1(22)2(3+4)3(34)=014+21=7
Now, We will find the cofactors of the matrix A:
A11=2211=0,A12=3221=7,A13=3221=7,A21=2311=1,A22=1321=7,A23=1221=5,A31=2322=2,A32=1332=7,A33=1232=4
Therefore, adjoint of matrix A will be given by:
adjA=077175274T=012777754A1=1|A| adj A=17012777754
Now, the system of equations can be reduced in the matrix form AX=B as
Where, X=xyz,B=632
AX=BX=A1Bxyz=17012777754632=1773535=155x=1,y=5 and z=5
Therefore, A1=17012777754 and (x,y,z)=(1,5,5)

OR

Given: 
 L.H.S. =(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab=b2+c2a2bcc2+a2b2caa2+b2c2ab C1C12C3=a2+b2+c2a2bca2+b2+c2b2caa2+b2+c2c2ab c1C1+C2=a2+b2+c2a2bc0b2a2cabc0c2a2abbcR1R2R1,R3R3R1
=(ba)(ca)a2+b2+c2a2bc0b+ac0c+ab(get common (b-a) from R2and (c-a) from RR3)
Expand along column 1
 =a2+b2+c2(ba)(ca)b2ab+c2+ac=(ab)(ba)(ca)(a+b+c)a2+b2+c2= R.H.S  L.H.S. = R.H.S 
Therefore, which has proven.

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon