Q.

If a and b are two vectors of equal magnitude and 𝜶 is the angle between them, then prove that |a+b||ab|=cotα2

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given that aand b are having equal magnitude,
So, let |a|=|b|=x
Now, 
Now |a+b|2|ab|2=|a|2+|b|2+2|a||b|cosα|a|2+|b|22|a||b|cosα=x2+x2+2x2cosαx2+x22x2cosα  (Because, |a|=|b|=x=2x2+2x2cosα2x22x2cosα=2x2(1+cosα)2x2(1cosα)=2cos2α22sin2α21+cosα=2cos2α2 and 1cosα=2sin2α=cot2α2
|a+b||ab|=cotα2

That have proven.

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon