Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If θ be the true angle of dip and θ1 and θ2 are the apparent dips observed in two vertical planes at right angles to each other, then the relation is :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

tan2θ=tan2θ1+tan2θ2

b

cot2θ=cot2θ1-cot2θ2

c

tan2θ=tan2θ1-tan2θ2

d

cot2θ=cot2θ1+cot2θ2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let BH and  BV  be the horizonal and vertical components of earth's magnetic field β. Since θ is the angle of dip

tanθ=BVBH  or  cotθ=BHBV (i

Suppose planes 1 and 2 are two mutually perpendicular planes and respectively make angles θ and 90°-θ with the magnetic meridian. The vertical components of earth's magnetic field remain same in the two planes but the effective horizontal components in the planes will be

 

Question Image

B1=BHcosθ  and B2=BHsinθ  The angles of dipθ1 and θ2 in the two planes are given by tanθ1=BVB1tanθ1=BVBHcosθ or cotθ1=BHcosθBV                              . . . (ii) Similarly, cotθ2=BHsinθBV                                     . . . .(iii)  From eqns. (ii) and (iii)  cot2θ1+cot2θ2=BH2BV2cos2θ+sin2θ=BH2BV2 cot2θ1+cot2θ2=cot2θ                               [ from eqn. (i)]

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring