Q.

If d,e,f are in GP  and the two quadratic equations ax2+2bx+c=0 and dx2+2ex+f=0 have a common root, then prove that da,eb,fc  are in HP.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

They are in A.P

b

They are in G.P

c

None of the Above 

d

They are in H.P

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equations

ax2+2bx+c=0 dx2+2ex+f=0

x=-2b±4b2-4ac2a          x= -2e±4e2-4df2d x= -b±b2-aca                x=-e±e2-dfd

Now as d,e,f are in GP hence e2=df

-b+b2-aca = -ed -bd+db2-ac = -ae  db2-ac =(bd-ae) 

squaring on both sides;

d2(b2-ac) = b2d2-2abde+a2e2  2abde= a2e2+aed2  (1)  

as da,eb.fc are in H.P.

Hence ; 2be=ad+cf

Therefore dividing Eqn (1) with ade2

2abdeade2= a2e2ade2 +acd2ade2 2be=ad+cde2(2)

Now e2=df putting in Eqn (2)

2be=ad+cddf 2be=ad+cf 

Hence Proved.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon