Q.

If e1 is eccentricity of the ellipse x216+y225=1 and e2 is eccentricity of hyperbola passing through the foci of ellipse and e1e2=1, then equation of hyperbola is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

x29y216=1

b

x216y29=1

c

x29y225=1

d

x216y29=1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

  eccentricity of ellipse=e1=25-1625=35 eccentricity of hyperbolae2=53(e1e2=1) Now foci of ellipse=(0,±be)(a<b)                                      =(0,±3)       let hyperbola be x2a2-y2b2=-1 it passes through (0,3) then b2=9 Now a2=b2(e2-1)=16 

 equation of hyperbola is x216y29=1 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If e1 is eccentricity of the ellipse x216+y225=1 and e2 is eccentricity of hyperbola passing through the foci of ellipse and e1e2=1, then equation of hyperbola is