Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If f(x)=  x2(sgn[x]+{x}),0x<2sinx+|x3|,2x<4, where [] and {} represent the greatest integer and the fractional part function, respectivley.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

f(x) is differentiable at x=1

b

f(x) is non-differentiable at x=2

c

f(x) is continuous but non-differentiable at x=1

d

f(x) is discontinuous at x=2

answer is A, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

For continuity at x = 1

limx1+f(x)=limx1+(x2sgn[x]+{x})=1+0=1

limx1f(x)=limx1(x2sgn[x]+{x})=1sgn(0)+1=1

Also, f(1) = 1 L.H.L = R.H.L = f(1). 

Now for differentiability, f(1+)=limh0f(1+h)f(1)h

=limh0(1+h)2sgn[1+h]+{1+h}1h

=limh0(1+h)2+h1h=limh0h2+3hhand

f(1)=limh0(1h)2sgn[1h]+{1h}1-h

=limh0(1h)2+1h1h=limh0h23hh=3

f(1+)=f(1)

Hence, f(x) is differentiable at x =1. Now at x =2,

limx2f(x)=limx2(x2sgn[x]+{x})=4×1+1=5

limx2+f(x)=limx2+(sinx+|x3|)=sin2+1

Hence LHLRHL

Hence, f(x) is discontinuous at x =2 and then f(x) is also non differentiable at x = 2.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring