Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If g (x) is a continuous function at x = a such that g(a) > 0 and f'(x)=g(x)(x2-ax+a2) for all xR, then f(x), is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

increasing in the neighbourhood of x = a

b

decreasing in the neighbourhood of x = a

c

constant in the neighbourhood ofx = a

d

maximum at x = a

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since g (x) is continuous at x = a and g (a) > 0.

  g(x)>0 for all x belonging in the neighbourhood of x = a

  f'(x)>0 for all x in the neighbourhood of x = a

                                                 x2ax+a2>0 for all xR]

  f(x) is increasing in the neighbourhood of x = a

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring