Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If αβ is not odd multiple of π2 and sin(α+β)cos(αβ)=1m1+m then prove that tanπ4α=mtanπ4+β

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given sin(α+β)cos(αβ)=1m1+m

By componendo & dividendo 

sin(α+β)+cos(αβ)sin(α+β)cos(αβ)=1m+1+m1m(1+m)

cosπ2(α+β)+cos(αβ)cosπ2(α+β)cos(αβ)=21m1m

cosC+cosD=2cosC+D2cosCD2

2cosπ2αβ+αβ2cosπ2αβα+β22sinπ2αβ+αβ2sinπ2αβα+β2=22m

cosπ4βcosπ4αsinπ4βsinπ4α=1m

cotπ4βcotπ4α=1m

tanπ4βtanπ4α=m

tanπ4αcotπ2π4β=m

tanπ4αcotπ4+β=m

tanπ4α=mtanπ4+β. Hence proved.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring