Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 If î + ĵ +  , 2î + 5ĵ, 5î + 2ĵ  5k and î  6ĵ   respectively, are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether AB and CD are collinear or not.
                                                       OR
The scalar product of the vector a = î + ĵ +  with a unit vector along the sum of the vectors b = 2î + 4ĵ  5 and c = λî + 2ĵ + 5 is equal to 1. Find the value of λ and hence find the unit vector along b + c.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given OA=(i^+j^+k^), OB=(2i^+5j^), OC=(5i^+2j^-5k^) and OD=(i^-6j^-k^) Angle between AB and CD is given by                  cosθ=AB.CDAB.CD         ...(i) Here, AB=(2-1)i^+(5-1)j^+(0-1)k^                  =i^+4j^-k^, CD=(1-3)i^+(-6-2)j^+(-1-(-3))k^       =-2i^+8j^+2k^, AB=12+42+(-1)2=18=9×2=32, and CD=(-2)2+(-8)2+22                  =72=36×2=62 Now, cosθ=(i^+4j^-k^).(-2i^-8j^+2k^)32×62                    =1(-2)+4(-8)+(-1) (2)3×6×2-1            cosθ=-1  θ=180=π            So angle between AB and CD is π.

 

OR

Also, since angle between AB and CD is 180,

they are in opposite directions.

Question Image

Since, AB and CD are parallel to the same line m, they are collinear.

Given, a=i^+j^+k^, b=2i^+4j^-5k^ and c=λi^+2j^+3k^  b+c=(2+λ)i^+6j^-2k^ Let r^ denote the unit vector along b+c. Then, r^=b+cb+c=(2+λ)i^+6j^-2k^(2+λ)2+36+4               =(2+λ)i^+6j^-2k^(2+λ)2+40                    ...(i)

Now, according to given condition, we have

                 i^+j^+k^.r^=1            [given]     (i^+j^+k^).(2+λ) i^+6j^-2k^(2+λ)2+40=1     (i^+j^+k^).(2+λ)i^+6j^-2k^                                             =(2+λ)2+40     2+λ+6-2=(2+λ)2+40             (λ+6)2=(2+λ)2+40                      8λ=8λ=1 Putting λ=1 in Eq. (i), we get               r^=17  (3i^+6j^-2k^) 

 

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring