Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 If î + ĵ +  , 2î + 5ĵ, 5î + 2ĵ  5k and î  6ĵ   respectively, are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether AB and CD are collinear or not.
                                                       OR
The scalar product of the vector a = î + ĵ +  with a unit vector along the sum of the vectors b = 2î + 4ĵ  5 and c = λî + 2ĵ + 5 is equal to 1. Find the value of λ and hence find the unit vector along b + c.

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given OA=(i^+j^+k^), OB=(2i^+5j^), OC=(5i^+2j^-5k^) and OD=(i^-6j^-k^) Angle between AB and CD is given by                  cosθ=AB.CDAB.CD         ...(i) Here, AB=(2-1)i^+(5-1)j^+(0-1)k^                  =i^+4j^-k^, CD=(1-3)i^+(-6-2)j^+(-1-(-3))k^       =-2i^+8j^+2k^, AB=12+42+(-1)2=18=9×2=32, and CD=(-2)2+(-8)2+22                  =72=36×2=62 Now, cosθ=(i^+4j^-k^).(-2i^-8j^+2k^)32×62                    =1(-2)+4(-8)+(-1) (2)3×6×2-1            cosθ=-1  θ=180=π            So angle between AB and CD is π.

 

OR

Also, since angle between AB and CD is 180,

they are in opposite directions.

Question Image

Since, AB and CD are parallel to the same line m, they are collinear.

Given, a=i^+j^+k^, b=2i^+4j^-5k^ and c=λi^+2j^+3k^  b+c=(2+λ)i^+6j^-2k^ Let r^ denote the unit vector along b+c. Then, r^=b+cb+c=(2+λ)i^+6j^-2k^(2+λ)2+36+4               =(2+λ)i^+6j^-2k^(2+λ)2+40                    ...(i)

Now, according to given condition, we have

                 i^+j^+k^.r^=1            [given]     (i^+j^+k^).(2+λ) i^+6j^-2k^(2+λ)2+40=1     (i^+j^+k^).(2+λ)i^+6j^-2k^                                             =(2+λ)2+40     2+λ+6-2=(2+λ)2+40             (λ+6)2=(2+λ)2+40                      8λ=8λ=1 Putting λ=1 in Eq. (i), we get               r^=17  (3i^+6j^-2k^) 

 

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon