Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

If x2+y22=xy, find dydx.

OR

If x=a(2θsin2θ) and y=a(1cos2θ), find dydx, when θ=π3.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given: x2+y22=xy......(1)

Differentiate the given equation w.r.t x, it follows
2x2+y22x+2ydydx    =xdydx+y4xx2+y2+4ydydxx2+y2    =xdydx+y     dydx4yx2+y2x    =y4xx2+y2    dydx    =y4xx2+y24yx2+y2x        dydx    =y4x34xy24x2y+4y3x
Therefore, dydx=y4x34xy24x2y+4y3x . Which is the required answer.

OR

Given: x=a(2θsin2θ) and y=a(1cos2θ)
Now, differentiate the x=a(2θsin2θ) and y=a(1cos2θ) w.r.t. 𝜃, it follows
dx=a(2cos2θ2)=2a(1cos2θ)
and dy=a(sin2θ2)=2asin2θ
 dydx=dydx=2asin2θ2a(1cos2θ)=sin2θ1cos2θ=2sinθcosθ2sin2θ=cotθ dydxθ=π3=cotπ3=13
Therefore, dydx=13 when θ=π3.

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon