Q.

If x=3cosθ2cos3θ and y=3sinθ2sin3θ, then (dydx)θ=π3=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

13

b

13

c

3

d

3

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

x=3cosθ2cos3θ

dxdθ=3(sinθ)6cos2θ(sinθ)

=3sinθ+6cos2θ.sinθ

y=3sinθ2sin3θ

dydθ=3cosθ6sin2θ.cosθ

dydx=3cosθ6sin2θ.cosθ6cos2θ.sinθ3sinθ

(dydx)θ=π3=3cosπ36.sin2π3.cosπ36cos2π3.sinπ33sinπ3

3.126.34.126.14.323.32=3294334332

=13

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If x=3cosθ−2cos3θ and y=3sinθ−2sin3θ, then (dydx)θ=π3=