Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

If x+y+n=0, n>0 is a normal to the ellipse x2+3y2=3 and x+my+3=0 and m<0 is a tangent to the ellipse x2+5y2=5 then the point of intersection of  these two lines satisfies the equation

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

x2=23y+1

b

x264-y225=1

c

y2=-25x+3

d

x-5y+5=0

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given ellipses are 

x23+y21=1   -(1)

and x25+y21=1   -(2)

Given lines are y=-xm-3m   -(3) 

and x+y+n=0   -(4)

since (3) is tangent to (2) then 

 9m2=51m2+1  4m2=1  m2=4  m=-2  ( m<0)

since (4) is normal to (1) then 

  n=±1  n=1(n>0)(3)  x-2y+3=0(4)  x+y+1=0

By solving these two equations we get point of intersection=(-53,23)

By verification it satisfies  the line x-5y +5=0

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If x+y+n=0, n>0 is a normal to the ellipse x2+3y2=3 and x+my+3=0 and m<0 is a tangent to the ellipse x2+5y2=5 then the point of intersection of  these two lines satisfies the equation