Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If y is twice differentiable function of x, then the expression 1-x2·d2ydx2-x·dydx+y by means of the transformation x=sint in terms of t is d2ydt2+λy. Find value of λ.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3

b

0

c

2

d

1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given: 1-x2·d2ydx2-x·dydx+y=d2ydt2+λy, when x=sint.

We have, 

x=sint

t=sin-1x

dt=11-x2dx

dxdt=1-x2.

Now,

dydx=dydt·dtdx dydx=dydt·11-x2 1-x2dydx=dydt.

Differentiating above equation with respect to x, we get:

1-x2·d2ydx2+1·(-2x)21-x2·dydx=ddxdydt

 1-x2·d2ydx2-x1-x2dydx=dydtdt·dtdx

 1-x2d2ydx2-xdydx=1-x2·d2ydt2·11-x2

1-x2d2ydx2-xdydx=d2ydt2

Adding y on both sides, we get:

1-x2d2ydx2-xdxdy+y=d2ydt2+y

From given equation, we get:

d2ydt2+λy=d2ydt2+y λ=1.

Therefore, solution is (2) 1.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring