Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If y=logsinx(tanx), then dydx at x=π4 is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

-4log2

b

-4log2

c

4log2

d

None of these

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given equation is y=logsinx(tanx)

 It can be written as y=logtanxlogsinx

Differentiating with respect to x,

dydx=(logsinx)sec2xtanx-(logtanx)(cosxsinx)(logsinx)2  dydx=(logsinx)sec2xtanx-(logtanx)(cotx)(logsinx)2

At x=π4,

dydxat x=π4=logsinπ4sec2π4tanπ4-logtanπ4cotπ4logsinπ42 dydxat x=π4=log12·2-0log122 dydxat x=π4=2log12 dydxat x=π4=2log2-1 dydxat x=π4=-2log2 dydxat x=π4=-4log2

The value of dydx at x=π4 is -4log2.

Therefore, the correct answer is option 3.

Watch 3-min video & get full concept clarity

course

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon