Q.

If y=logsinx(tanx), then dydx at x=π4 is equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

-4log2

b

-4log2

c

4log2

d

None of these

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given equation is y=logsinx(tanx)

 It can be written as y=logtanxlogsinx

Differentiating with respect to x,

dydx=(logsinx)sec2xtanx-(logtanx)(cosxsinx)(logsinx)2  dydx=(logsinx)sec2xtanx-(logtanx)(cotx)(logsinx)2

At x=π4,

dydxat x=π4=logsinπ4sec2π4tanπ4-logtanπ4cotπ4logsinπ42 dydxat x=π4=log12·2-0log122 dydxat x=π4=2log12 dydxat x=π4=2log2-1 dydxat x=π4=-2log2 dydxat x=π4=-4log2

The value of dydx at x=π4 is -4log2.

Therefore, the correct answer is option 3.

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon