Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

In △ABC, the median AD divides ∠BAC  such that ∠BAD:∠CAD=2:1. Then cos(A3)  is equal to


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

sinB2sinC

b

sinC2sinB

c

2sinBsinC

d

None of These 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

seoWe are given that the median AD divides  ∠BAC such that  ∠BAD:∠CAD=2:1
BADCAD=21
⇒∠BAD = 2∠CAD...................… (1)
Since we know ∠BAC=∠BAD+∠CAD
Substitute the values in equation (1)
⇒∠BAC = 2∠CAD+∠CAD
⇒∠BAC = 3∠CAD
We write  ∠BAC=A
⇒A = 3∠CAD
Divide both sides by 3
A3=CAD.................. (2)
Substitute value from equation (2) in (1)
 BAD=2A3.................. (3)
Now we apply the law of sine in both triangles made by the median separately.
In △BAD
BDsinBAD=ADsinB
a2sin2A3=ADsinB  
a2sinBsin2A3=AD     ................. (4)
In △CAD
CDsinCAD=ADsinC    
a2sinA3=ADsinC   
a2sinCsinA3=AD .................... (5)
Since AD is the median and will have fixed length, we equate values from (4) and (5)
a2sinBsin2A3=a2sinCsinA3   
sinBsin2A3=sinCsinA3    
Since, sin2x=2sinxcosx  sinB2sinA3cosA3=sinCsinA3    
sinB2cosA3=sinC1   sinB2sinC=cosA3     The value of  cosA3 is equal to sinB2sinC
∴ Option 1 is correct.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring