Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 14 ar(ABC).

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4 ar(ABC)

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

AD is a median of triangle ABC and BE is the median of ΔABD. 

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4 ar(ABC)

Since AD is the median of ΔABC, so it will divide ΔABC into two equal triangles.

∴ ar (ΔABD) = ar (ΔADC)

Also, ar (ΔABD) = 1/2 ar(ABC)   .....(i)

Now, In ΔABD, BE is the median,

Therefore, BE will divide ΔABD into two equal triangles

ar (ΔBED) = ar (ΔBAE) and ar (ΔBED) = 1/2 ar(ΔABD)

ar (ΔBED) = 1/2 × [1/2 ar(ABC)] (Using equation (i))

∴ ar (ΔBED) = 1/4 ar(ΔABC)

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon