Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

In an AP: 

(i) Given a = 5, d = 3, an = 50, find n and Sn

(ii) Given a = 7, a13 = 35, find d and S13

(iii) Given a12 = 37, d = 3, find a and S12

(iv) Given a3 = 15, S10 = 125, find d and a10

(v) Given d = 5, S9 = 75, find a and a9

(vi) Given a = 2, d = 8, Sn = 90, find n and an

(vii) Given a = 8, an = 62, Sn = 210, find n and d. 

(viii) Given an = 4, d = 2, Sn = –14, find n and a.

 (ix) Given a = 3, n = 8, S = 192, find d. 

(x) Given l = 28, S = 144, and there are total 9 terms. Find a.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(i) Given:

a = 5, d = 3, an = 50, find n and Sn.

Using the formula,

aₙ = a + (n - 1)d

50 = 5 + (n - 1)3

45 = (n - 1)3

15 = n - 1

n = 16

Using the formula,

Sₙ = n/2 [a + l]

S16 = 16/2 [ 5 + 50]

= 8 × 55

= 440

Therefore,

n = 16 and S16 = 440

 

(ii) Given a = 7, a13 = 35, find d and S13.

Using the formula,

aₙ = a + (n - 1)d

a₁₃ = a + (13 - 1)d

35 = 7 + 12d

35 - 7 = 12d

d = 28/12

d = 7/3

Using the formula,

Sₙ = n/2 [a + l]

S13 = 13/2 [7 + 35]

= 13/2 × 42

= 13 × 21

= 273

Therefore,

S13 = 273 and d = 7/3

 

(iii) Given a12 = 37, d = 3, find a and S12.

Using the formula,

an = a + (n - 1)d

a12 = a + (12 - 1)3

37 = a + 33

a = 4

Using the formula,

Sn = n/2 [a + l]

S12 = 12/2 [4 + 37]

= 6 × 41

S12 = 246

Therefore,

S12 = 246 and a = 4

 

(iv) Given a3 = 15, S10 = 125, find d and a10

Using the formula, 

an = a + (n - 1)d

a3 = a + (3 - 1)d

15 = a + 2d   - - - - - (1)

Using the formula,

Sn = n/2 [2a + (n - 1)d]

S₁₀ = 10/2 [2a + (10 - 1)d]

125 = 5[2a + 9d]

25 = 2a + 9d  - - - - -(2)

On multiplying equation (1) by 2, we obtain,

30 = 2a + 4d  - - - - -(3)

Solving equations (2) and (3) we get,

- 5 = 5d

d = - 1

From equation (1),

15 = a + 2(- 1)

15 = a - 2

a = 17

a₁₀ = a + (10 - 1)d

a₁₀ = 17 + 9 (- 1)

a₁₀ = 17 - 9

a₁₀ = 8

Therefore,

a₁₀ = 8 and d = - 1

 

(v) Given d = 5, S9 = 75, find a and a9

Using the formula,

Sn = n/2 [2a + (n - 1)d]

75 = 9/2 [2a + (9 - 1)5]

75 = 9/2(2a + 40)

25 = 3(a + 20)

25 = 3a + 60

a = - 35/3

Now we get,

a9= a + (9 - 1) × 5

= - 35/3 + 8 × 5

= - 35/3 + 40

= (- 35 + 120)/3

= 85/3

Therefore, a9 = 85/3 and a = - 35/3

 

(vi) Given a = 2, d = 8, Sn = 90, find n and an

Using the formula,

Sn = n/2 [2a + (n - 1) d]

90 = n/2 [4 + (n - 1) 8]

90 = n [2 + (n - 1)4]

90 = n [2 + 4n - 4]

90 = n [4n - 2]

90 = 4n² - 2n

4n² - 2n - 90 = 0

4n² - 20n + 18n - 90 = 0

4n (n - 5) + 18(n - 5) = 0

(n - 5)(4n + 18) = 0

Either (n - 5) = 0 or (4n + 18) = 0

n = 5 or n = - 9/2

However, n can not be negative.

Therefore, n = 5

we get,

a5 = 2 + (5 - 1)8

a5 = 2 + 4 × 8

a5 = 2 + 32

a5 = 34

Therefore, n = 5 and a5 = 34

 

(vii) Given a = 8, an = 62, Sn = 210, find n and d. 

Using the formula,

Sn = n / 2 [a + l]

210 = n / 2 [8 + 62]

210 = n × 35

n = 6

Using the formula,

an = a + (n - 1)d

we get,

62 = 8 + (6 - 1) d

62 - 8 = 5d

54 = 5d

d = 54/5

Therefore,  n = 6 and d = 54/5

 

(viii) Given an = 4, d = 2, Sn = –14, find n and a.

Using the formula,

 an = a + (n - 1)d

4 = a + (n - 1)2

4 = a + 2n - 2

a = 6 - 2n  .... (1)

Sn = n/2 [a + l]

- 14 = n/2 [6 - 2n + 4]     [from(1)]

- 14 = n (5 - n)

- 14 = 5n - n²

n² - 5n - 14 = 0

n² - 7n + 2n -14 = 0

n (n - 7) + 2 (n - 7) = 0

(n - 7)(n + 2) = 0

Either n - 7 = 0 or n + 2 = 0

n = 7 or n = - 2

However, n can not be negative.

Therefore, n = 7

From equation (1), we get

a = 6 - 2n

a = 6 - 2 × 7

a = 6 - 14

a = - 8

Therefore, a = - 8 and n = 7 

 

 (ix) Given a = 3, n = 8, S = 192, find d.

Using the formula,

Sn = n/2 [2a + (n - 1) d]

192 = 8/2 [2 × 3 + (8 - 1) d]

192 = 4[6 + 7d]

48 = 6 + 7d

42 = 7d

d = 6

Therefore, d = 6

 

(x) Given l = 28, S = 144, and there are total 9 terms. Find a.

Using the formula,

Sn = n/2 [a + l]

144 = 9/2 (a + 28)

32 = a + 28

a = 4

Therefore, a = 4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring