


















Courses
Q.
In an AP:
(i) Given a = 5, d = 3, an = 50, find n and Sn .
(ii) Given a = 7, a13 = 35, find d and S13.
(iii) Given a12 = 37, d = 3, find a and S12.
(iv) Given a3 = 15, S10 = 125, find d and a10.
(v) Given d = 5, S9 = 75, find a and a9 .
(vi) Given a = 2, d = 8, Sn = 90, find n and an.
(vii) Given a = 8, an = 62, Sn = 210, find n and d.
(viii) Given an = 4, d = 2, Sn = –14, find n and a.
(ix) Given a = 3, n = 8, S = 192, find d.
(x) Given l = 28, S = 144, and there are total 9 terms. Find a.
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
answer is 1.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You

JEE

NEET

Foundation JEE

Foundation NEET

CBSE
Detailed Solution
(i) Given:
a = 5, d = 3, an = 50, find n and Sn.
Using the formula,
aₙ = a + (n - 1)d
50 = 5 + (n - 1)3
45 = (n - 1)3
15 = n - 1
n = 16
Using the formula,
Sₙ = n/2 [a + l]
S16 = 16/2 [ 5 + 50]
= 8 × 55
= 440
Therefore,
n = 16 and S16 = 440
(ii) Given a = 7, a13 = 35, find d and S13.
Using the formula,
aₙ = a + (n - 1)d
a₁₃ = a + (13 - 1)d
35 = 7 + 12d
35 - 7 = 12d
d = 28/12
d = 7/3
Using the formula,
Sₙ = n/2 [a + l]
S13 = 13/2 [7 + 35]
= 13/2 × 42
= 13 × 21
= 273
Therefore,
S13 = 273 and d = 7/3
(iii) Given a12 = 37, d = 3, find a and S12.
Using the formula,
an = a + (n - 1)d
a12 = a + (12 - 1)3
37 = a + 33
a = 4
Using the formula,
Sn = n/2 [a + l]
S12 = 12/2 [4 + 37]
= 6 × 41
S12 = 246
Therefore,
S12 = 246 and a = 4
(iv) Given a3 = 15, S10 = 125, find d and a10
Using the formula,
an = a + (n - 1)d
a3 = a + (3 - 1)d
15 = a + 2d - - - - - (1)
Using the formula,
Sn = n/2 [2a + (n - 1)d]
S₁₀ = 10/2 [2a + (10 - 1)d]
125 = 5[2a + 9d]
25 = 2a + 9d - - - - -(2)
On multiplying equation (1) by 2, we obtain,
30 = 2a + 4d - - - - -(3)
Solving equations (2) and (3) we get,
- 5 = 5d
d = - 1
From equation (1),
15 = a + 2(- 1)
15 = a - 2
a = 17
a₁₀ = a + (10 - 1)d
a₁₀ = 17 + 9 (- 1)
a₁₀ = 17 - 9
a₁₀ = 8
Therefore,
a₁₀ = 8 and d = - 1
(v) Given d = 5, S9 = 75, find a and a9 .
Using the formula,
Sn = n/2 [2a + (n - 1)d]
75 = 9/2 [2a + (9 - 1)5]
75 = 9/2(2a + 40)
25 = 3(a + 20)
25 = 3a + 60
a = - 35/3
Now we get,
a9= a + (9 - 1) × 5
= - 35/3 + 8 × 5
= - 35/3 + 40
= (- 35 + 120)/3
= 85/3
Therefore, a9 = 85/3 and a = - 35/3
(vi) Given a = 2, d = 8, Sn = 90, find n and an .
Using the formula,
Sn = n/2 [2a + (n - 1) d]
90 = n/2 [4 + (n - 1) 8]
90 = n [2 + (n - 1)4]
90 = n [2 + 4n - 4]
90 = n [4n - 2]
90 = 4n² - 2n
4n² - 2n - 90 = 0
4n² - 20n + 18n - 90 = 0
4n (n - 5) + 18(n - 5) = 0
(n - 5)(4n + 18) = 0
Either (n - 5) = 0 or (4n + 18) = 0
n = 5 or n = - 9/2
However, n can not be negative.
Therefore, n = 5
we get,
a5 = 2 + (5 - 1)8
a5 = 2 + 4 × 8
a5 = 2 + 32
a5 = 34
Therefore, n = 5 and a5 = 34
(vii) Given a = 8, an = 62, Sn = 210, find n and d.
Using the formula,
Sn = n / 2 [a + l]
210 = n / 2 [8 + 62]
210 = n × 35
n = 6
Using the formula,
an = a + (n - 1)d
we get,
62 = 8 + (6 - 1) d
62 - 8 = 5d
54 = 5d
d = 54/5
Therefore, n = 6 and d = 54/5
(viii) Given an = 4, d = 2, Sn = –14, find n and a.
Using the formula,
an = a + (n - 1)d
4 = a + (n - 1)2
4 = a + 2n - 2
a = 6 - 2n .... (1)
Sn = n/2 [a + l]
- 14 = n/2 [6 - 2n + 4] [from(1)]
- 14 = n (5 - n)
- 14 = 5n - n²
n² - 5n - 14 = 0
n² - 7n + 2n -14 = 0
n (n - 7) + 2 (n - 7) = 0
(n - 7)(n + 2) = 0
Either n - 7 = 0 or n + 2 = 0
n = 7 or n = - 2
However, n can not be negative.
Therefore, n = 7
From equation (1), we get
a = 6 - 2n
a = 6 - 2 × 7
a = 6 - 14
a = - 8
Therefore, a = - 8 and n = 7
(ix) Given a = 3, n = 8, S = 192, find d.
Using the formula,
Sn = n/2 [2a + (n - 1) d]
192 = 8/2 [2 × 3 + (8 - 1) d]
192 = 4[6 + 7d]
48 = 6 + 7d
42 = 7d
d = 6
Therefore, d = 6
(x) Given l = 28, S = 144, and there are total 9 terms. Find a.
Using the formula,
Sn = n/2 [a + l]
144 = 9/2 (a + 28)
32 = a + 28
a = 4
Therefore, a = 4
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test