Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

In an AP: 

(i) Given a = 5, d = 3, an = 50, find n and Sn

(ii) Given a = 7, a13 = 35, find d and S13

(iii) Given a12 = 37, d = 3, find a and S12

(iv) Given a3 = 15, S10 = 125, find d and a10

(v) Given d = 5, S9 = 75, find a and a9

(vi) Given a = 2, d = 8, Sn = 90, find n and an

(vii) Given a = 8, an = 62, Sn = 210, find n and d. 

(viii) Given an = 4, d = 2, Sn = –14, find n and a.

 (ix) Given a = 3, n = 8, S = 192, find d. 

(x) Given l = 28, S = 144, and there are total 9 terms. Find a.

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(i) Given:

a = 5, d = 3, an = 50, find n and Sn.

Using the formula,

aₙ = a + (n - 1)d

50 = 5 + (n - 1)3

45 = (n - 1)3

15 = n - 1

n = 16

Using the formula,

Sₙ = n/2 [a + l]

S16 = 16/2 [ 5 + 50]

= 8 × 55

= 440

Therefore,

n = 16 and S16 = 440

 

(ii) Given a = 7, a13 = 35, find d and S13.

Using the formula,

aₙ = a + (n - 1)d

a₁₃ = a + (13 - 1)d

35 = 7 + 12d

35 - 7 = 12d

d = 28/12

d = 7/3

Using the formula,

Sₙ = n/2 [a + l]

S13 = 13/2 [7 + 35]

= 13/2 × 42

= 13 × 21

= 273

Therefore,

S13 = 273 and d = 7/3

 

(iii) Given a12 = 37, d = 3, find a and S12.

Using the formula,

an = a + (n - 1)d

a12 = a + (12 - 1)3

37 = a + 33

a = 4

Using the formula,

Sn = n/2 [a + l]

S12 = 12/2 [4 + 37]

= 6 × 41

S12 = 246

Therefore,

S12 = 246 and a = 4

 

(iv) Given a3 = 15, S10 = 125, find d and a10

Using the formula, 

an = a + (n - 1)d

a3 = a + (3 - 1)d

15 = a + 2d   - - - - - (1)

Using the formula,

Sn = n/2 [2a + (n - 1)d]

S₁₀ = 10/2 [2a + (10 - 1)d]

125 = 5[2a + 9d]

25 = 2a + 9d  - - - - -(2)

On multiplying equation (1) by 2, we obtain,

30 = 2a + 4d  - - - - -(3)

Solving equations (2) and (3) we get,

- 5 = 5d

d = - 1

From equation (1),

15 = a + 2(- 1)

15 = a - 2

a = 17

a₁₀ = a + (10 - 1)d

a₁₀ = 17 + 9 (- 1)

a₁₀ = 17 - 9

a₁₀ = 8

Therefore,

a₁₀ = 8 and d = - 1

 

(v) Given d = 5, S9 = 75, find a and a9

Using the formula,

Sn = n/2 [2a + (n - 1)d]

75 = 9/2 [2a + (9 - 1)5]

75 = 9/2(2a + 40)

25 = 3(a + 20)

25 = 3a + 60

a = - 35/3

Now we get,

a9= a + (9 - 1) × 5

= - 35/3 + 8 × 5

= - 35/3 + 40

= (- 35 + 120)/3

= 85/3

Therefore, a9 = 85/3 and a = - 35/3

 

(vi) Given a = 2, d = 8, Sn = 90, find n and an

Using the formula,

Sn = n/2 [2a + (n - 1) d]

90 = n/2 [4 + (n - 1) 8]

90 = n [2 + (n - 1)4]

90 = n [2 + 4n - 4]

90 = n [4n - 2]

90 = 4n² - 2n

4n² - 2n - 90 = 0

4n² - 20n + 18n - 90 = 0

4n (n - 5) + 18(n - 5) = 0

(n - 5)(4n + 18) = 0

Either (n - 5) = 0 or (4n + 18) = 0

n = 5 or n = - 9/2

However, n can not be negative.

Therefore, n = 5

we get,

a5 = 2 + (5 - 1)8

a5 = 2 + 4 × 8

a5 = 2 + 32

a5 = 34

Therefore, n = 5 and a5 = 34

 

(vii) Given a = 8, an = 62, Sn = 210, find n and d. 

Using the formula,

Sn = n / 2 [a + l]

210 = n / 2 [8 + 62]

210 = n × 35

n = 6

Using the formula,

an = a + (n - 1)d

we get,

62 = 8 + (6 - 1) d

62 - 8 = 5d

54 = 5d

d = 54/5

Therefore,  n = 6 and d = 54/5

 

(viii) Given an = 4, d = 2, Sn = –14, find n and a.

Using the formula,

 an = a + (n - 1)d

4 = a + (n - 1)2

4 = a + 2n - 2

a = 6 - 2n  .... (1)

Sn = n/2 [a + l]

- 14 = n/2 [6 - 2n + 4]     [from(1)]

- 14 = n (5 - n)

- 14 = 5n - n²

n² - 5n - 14 = 0

n² - 7n + 2n -14 = 0

n (n - 7) + 2 (n - 7) = 0

(n - 7)(n + 2) = 0

Either n - 7 = 0 or n + 2 = 0

n = 7 or n = - 2

However, n can not be negative.

Therefore, n = 7

From equation (1), we get

a = 6 - 2n

a = 6 - 2 × 7

a = 6 - 14

a = - 8

Therefore, a = - 8 and n = 7 

 

 (ix) Given a = 3, n = 8, S = 192, find d.

Using the formula,

Sn = n/2 [2a + (n - 1) d]

192 = 8/2 [2 × 3 + (8 - 1) d]

192 = 4[6 + 7d]

48 = 6 + 7d

42 = 7d

d = 6

Therefore, d = 6

 

(x) Given l = 28, S = 144, and there are total 9 terms. Find a.

Using the formula,

Sn = n/2 [a + l]

144 = 9/2 (a + 28)

32 = a + 28

a = 4

Therefore, a = 4

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon