Courses
Q.
In an AP:
(i) Given a = 5, d = 3, an = 50, find n and Sn .
(ii) Given a = 7, a13 = 35, find d and S13.
(iii) Given a12 = 37, d = 3, find a and S12.
(iv) Given a3 = 15, S10 = 125, find d and a10.
(v) Given d = 5, S9 = 75, find a and a9 .
(vi) Given a = 2, d = 8, Sn = 90, find n and an.
(vii) Given a = 8, an = 62, Sn = 210, find n and d.
(viii) Given an = 4, d = 2, Sn = –14, find n and a.
(ix) Given a = 3, n = 8, S = 192, find d.
(x) Given l = 28, S = 144, and there are total 9 terms. Find a.
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
answer is 1.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
(i) Given:
a = 5, d = 3, an = 50, find n and Sn.
Using the formula,
aₙ = a + (n - 1)d
50 = 5 + (n - 1)3
45 = (n - 1)3
15 = n - 1
n = 16
Using the formula,
Sₙ = n/2 [a + l]
S16 = 16/2 [ 5 + 50]
= 8 × 55
= 440
Therefore,
n = 16 and S16 = 440
(ii) Given a = 7, a13 = 35, find d and S13.
Using the formula,
aₙ = a + (n - 1)d
a₁₃ = a + (13 - 1)d
35 = 7 + 12d
35 - 7 = 12d
d = 28/12
d = 7/3
Using the formula,
Sₙ = n/2 [a + l]
S13 = 13/2 [7 + 35]
= 13/2 × 42
= 13 × 21
= 273
Therefore,
S13 = 273 and d = 7/3
(iii) Given a12 = 37, d = 3, find a and S12.
Using the formula,
an = a + (n - 1)d
a12 = a + (12 - 1)3
37 = a + 33
a = 4
Using the formula,
Sn = n/2 [a + l]
S12 = 12/2 [4 + 37]
= 6 × 41
S12 = 246
Therefore,
S12 = 246 and a = 4
(iv) Given a3 = 15, S10 = 125, find d and a10
Using the formula,
an = a + (n - 1)d
a3 = a + (3 - 1)d
15 = a + 2d - - - - - (1)
Using the formula,
Sn = n/2 [2a + (n - 1)d]
S₁₀ = 10/2 [2a + (10 - 1)d]
125 = 5[2a + 9d]
25 = 2a + 9d - - - - -(2)
On multiplying equation (1) by 2, we obtain,
30 = 2a + 4d - - - - -(3)
Solving equations (2) and (3) we get,
- 5 = 5d
d = - 1
From equation (1),
15 = a + 2(- 1)
15 = a - 2
a = 17
a₁₀ = a + (10 - 1)d
a₁₀ = 17 + 9 (- 1)
a₁₀ = 17 - 9
a₁₀ = 8
Therefore,
a₁₀ = 8 and d = - 1
(v) Given d = 5, S9 = 75, find a and a9 .
Using the formula,
Sn = n/2 [2a + (n - 1)d]
75 = 9/2 [2a + (9 - 1)5]
75 = 9/2(2a + 40)
25 = 3(a + 20)
25 = 3a + 60
a = - 35/3
Now we get,
a9= a + (9 - 1) × 5
= - 35/3 + 8 × 5
= - 35/3 + 40
= (- 35 + 120)/3
= 85/3
Therefore, a9 = 85/3 and a = - 35/3
(vi) Given a = 2, d = 8, Sn = 90, find n and an .
Using the formula,
Sn = n/2 [2a + (n - 1) d]
90 = n/2 [4 + (n - 1) 8]
90 = n [2 + (n - 1)4]
90 = n [2 + 4n - 4]
90 = n [4n - 2]
90 = 4n² - 2n
4n² - 2n - 90 = 0
4n² - 20n + 18n - 90 = 0
4n (n - 5) + 18(n - 5) = 0
(n - 5)(4n + 18) = 0
Either (n - 5) = 0 or (4n + 18) = 0
n = 5 or n = - 9/2
However, n can not be negative.
Therefore, n = 5
we get,
a5 = 2 + (5 - 1)8
a5 = 2 + 4 × 8
a5 = 2 + 32
a5 = 34
Therefore, n = 5 and a5 = 34
(vii) Given a = 8, an = 62, Sn = 210, find n and d.
Using the formula,
Sn = n / 2 [a + l]
210 = n / 2 [8 + 62]
210 = n × 35
n = 6
Using the formula,
an = a + (n - 1)d
we get,
62 = 8 + (6 - 1) d
62 - 8 = 5d
54 = 5d
d = 54/5
Therefore, n = 6 and d = 54/5
(viii) Given an = 4, d = 2, Sn = –14, find n and a.
Using the formula,
an = a + (n - 1)d
4 = a + (n - 1)2
4 = a + 2n - 2
a = 6 - 2n .... (1)
Sn = n/2 [a + l]
- 14 = n/2 [6 - 2n + 4] [from(1)]
- 14 = n (5 - n)
- 14 = 5n - n²
n² - 5n - 14 = 0
n² - 7n + 2n -14 = 0
n (n - 7) + 2 (n - 7) = 0
(n - 7)(n + 2) = 0
Either n - 7 = 0 or n + 2 = 0
n = 7 or n = - 2
However, n can not be negative.
Therefore, n = 7
From equation (1), we get
a = 6 - 2n
a = 6 - 2 × 7
a = 6 - 14
a = - 8
Therefore, a = - 8 and n = 7
(ix) Given a = 3, n = 8, S = 192, find d.
Using the formula,
Sn = n/2 [2a + (n - 1) d]
192 = 8/2 [2 × 3 + (8 - 1) d]
192 = 4[6 + 7d]
48 = 6 + 7d
42 = 7d
d = 6
Therefore, d = 6
(x) Given l = 28, S = 144, and there are total 9 terms. Find a.
Using the formula,
Sn = n/2 [a + l]
144 = 9/2 (a + 28)
32 = a + 28
a = 4
Therefore, a = 4