Q.

In Fig. 6.54, O is a point in the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 =AF2 + BD2 + CE2

(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
Question Image

 

 

 

 

 

 

 

 

 

 

 

 

 

Question Image

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(i) In △ABC

OD ⊥ BC, OE ⊥ AC and OF ⊥ AB

OA2 = AF2 + OF2 [Since, ∠OFA = 90°]............... (1)

Similarly, In △OBD

OB2 = BD2 + OD2 [Since ∠ODA = 90°].............. (2)

In △OCE

OC2 = CE2 + OE2 [Since, ∠OEC = 90°]………………(3)

Adding equations (1), (2) and (3)

OA2 + OB2 + OC2 = AF2 + OF2 + BD2 + OD2 + CE2 + OE2

OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2............. (4)

(ii) From equation (4) let's rearrange and group the terms.

(OA2 - OE2) + (OB2 - OF2) + (OC2 - OD2) = AF2 + BD2 + CE2

Since, △OAE, △OFB and △ODC are right triangles

Using pythagoras theorem we have,

AE2 = OA2 - OE2 .............. (5)

BF2 = OB2 - OF2 .............. (6)

CD2 = OC2 - OD2 ............... (7)

AF2 + BD2 + CE2 = AE2 + CD2 + BF[ From equations (5), (6) and (7)]]

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon