Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.


In fig, ABC and BDE are two equilateral triangles such that D is the midpoint of BC. If AE intersects BC at F, then the relations

(i) ar(ADE)=14ar(ABC)


(ii)ar(BDE)=12ar(BAE)


iii arABC=2arBEC


iv arBFE=arAFD


v arBFE=2arFED


vi arFED=18arAFC


Question Image


see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

(i), (ii) and (iii) are correct

b

(i), (v) and (iv) are correct

c

All are correct

d

None 

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given,
Two equilateral triangles are ABE, BDE.
D =midpoint of BC.
Suppose a = side of triangle ABC.
So, its area,
arABC=34a2
(i)  As, D = midpoint of BC.  So,
BD=a2
Here, area of BDE,
arBDE=34a22=316a2
arBDE=14arABC
(ii) Now, DE = median of BEC Here, each median divides a triangle in two others with the equal area.
Therefore,
arBDE=12arBEC1
EBC=BCA=60
Here, alternate angles in the lines BE and AC with BC =transversal.
So, BE AC. As,
BEC and BAE are on same base which is BE so, it lies in the same parallel lines such that BE and AC. Therefore,
arBEC=arBAE
arBDE=12arBEC from 1
arBDE=12arBAE
iiiin the second part arBDE=12arBEC
(ED =median of BEC which divides the triangle in 2 others same area.)
So,
ar(BDE)=14ar(ABC) (from (i))
So,
14arABC=12arBEC
arABC=2arBEC
 (iv) ABD=BDE=60  (equilateral triangle angles)
For alternate angles in lines AB and ED where BD =transversal. Therefore,
 BAED.
Therefore,
ar(BDE)=ar(AED)(Since, triangles are on same base (ED) and in the same parallel lines AB and line DE) ar(BDE)-ar(FED)=ar(AED)-ar(FED)
ar(BEF)=ar(AFD)
v now in ABC, using Apollonius theorem,  AB2+AC2=2AD2+2BD2
As,
AB=AC
Put the values,
AD2=AB2-B2
AD2=(a)2-a22
AD2=a2-a24=3a24
AD=32a
Now, in BED, with the help of Apollonius theorem,
Make a perpendicular from EP on the line BD,
So, EP = median BED
Thus,
EP2=DE2-DP2
EP2=a22-a42
EP2=a24-a216=3a216
EP=3a4
arAFD=12×FD×AD
arAFD=12×FD×32a
arEFD=12×FD×EP
arEFD=34a
Now,
arAFD=32a
arEFD=34a
arAFD=2arEFD
Also, arBEF=arAFD
So, arBFE=arAFD=2arEFD
vi In the six part we have arBDE=14arABC
So, arBEF+arFED=14×2arADC
2ar(FED)+ar(FED)=12(ar(AFC)-ar(AFD)[Usingpartv)
3arFED=12arAFC-12×2arFED
arFED=18arAFC
4arFED=12arAFC
Option 3 is correct.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon