Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

In the reaction \large A\, + \,2B\, \Leftrightarrow \,2C\, + \,D, the initial concentration of B is two times that of 'A'. But equilibrium concentration of B & C were found to be equal. Then the KC for the above system is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

1

b

0.27

c

0.18

d

0.11

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given

\large {\left[ B \right]_i} = 2{\left[ A \right]_i}
\large {\left[ B \right]_{eq}} = {\left[ C \right]_{eq}}

A + 2B 2C + D

from stoichiometry

x moles A react with 2x moles of B to give 2x moles of C and X moles of D

 

Stoichiometry
\large \mathop {{A}\left( g \right)}\limits^{1\,mole} +
\large \mathop {{2B}\left( g \right)}\limits^{1\,mole}
\rightleftharpoons
\large \mathop {2C}\limits^{2\,mole} \left( g \right)
\large \mathop {{D}\left( g \right)}\limits^{1\,mole}
Initial moles12   00
Moles at equilibrium(1 - x)(2 - 2x)  2xx
Equilibrium concentration
\large \left( {\frac{{1 - x}}{{V}}} \right)

 

\large \left( {\frac{{2 - 2x}}{{V}}} \right)
 

 

\large \left (\frac{{2x}}{{V}} \right )
\large \left (\frac{{x}}{{V}} \right )
\large {\left[ B \right]_{eq}} = {\left[ C \right]_{eq}}
\large \left( {\frac{{2 - 2x}}{V}} \right) = \frac{{2x}}{V}
\large \boxed {x=\frac{{1}}{2}}
\large {K_C} = \frac{{{{\left[ C \right]}^2}\left[ D \right]}}{{\left[ A \right]{{\left[ B \right]}^2}}}
\large K_C=\frac{{\left( {\frac{{2 - 2x}}{V}} \right)^2}{\left( {\frac{x}{V}} \right)}}{{\left( {\frac{{1 - x}}{V}} \right)}{\left( {\frac{{2 - 2x}}{V}} \right)^2}}
\large K_C=\frac{{\left(2x\right)^2\left(x\right)}}{{\left( {1 - x} \right)}{\left( {{2 - 2x}} \right)^2}}

Substituting the value of X = 12

\large {K_C} = \frac{{{{\left( 1 \right)}^2}\left( {\frac{1}{2}} \right)}}{{\left( {\frac{1}{2}} \right){{\left( 1 \right)}^2}}}
\large \boxed{{K_C} = 1}

 

 

 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon