Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

In triangle PQR, right angled at Q, PR+QR=25cm and PQ=5cm. {fill_interger},[[1]],[[2]]are all the sides of the triangle.


see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

First, let us draw the given right angled triangle PQR.
https://www.vedantu.com/question-sets/f82e1523-410f-4df8-8af7-38fdaa99c6eb7878106478273177028.pngPR+QR = 25 cm.
⇒PR = 25−QR
In triangle PQR,
Hypotenuse2=Perpendicular2+Base2.
PR2=PQ2+QR2
Substituting  PQ = 5 cm and PR = 25−QR
25-QR2=52+QR2
252+QR2-2(25)(QR)=52+QR2  
 625+QR2-2(25)(QR)=25+QR2   
 625+QR2-50QR=25+QR2   
 625+QR2-50QR-QR2=25+QR2-QR2
 625-50QR=25
⇒ 625−50QR−25 = 25−25
⇒ 600−50QR = 0
 50QR=600
Dividing both sides of the equation by 50, we get  50QR50=60050 ∴ QR=12
Thus, we get the length of base QR is 12 cm.
Now, substituting QR=12cm in the equation PR=25−QR, we get
⇒PR=25−12
∴ PR=13
Thus, we get the length of hypotenuse PR as 13 cm.
Therefore, the sides of the triangle are of lengths 5 cm, 12 cm, and 13 cm.
 
Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon