Q.

 In [0,1] Lagrange's mean value theorem is not applicable to 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

f(x)=12-x,x<1212-x2,x12

b

f(x)=sinxx,x01,x=0

c

f(x)=x|x|

d

f(x)=|x|

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given interval range is 0,1.

Lagrange's mean value theorem: If f(x) is representing a polynomial function in x and the two roots of the equation f(x)=0 are x=a and x=b, then there exists at                                                         least one root of the equation f'(x)=0 lying between these values.

                                                      f'(x)=f(b)-f(a)b-aff'12+=12-12-121=0

The function f(x)=12-x,x<1212-x2,x12

The left hand derivative f'12-=12-1-121-0=-1.

The right had derivative 

For the function f(x) given in option 1, we have (LHD at x=12)=-1 and ( RHD at x=12)=0.

So, it is not differentiable at x=12(0,1).

 Lagrange's mean value theorem is not applicable.

Hence, option 1 is the correct option.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon