Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

 In [0,1] Lagrange's mean value theorem is not applicable to 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

f(x)=x|x|

b

f(x)=sinxx,x01,x=0

c

f(x)=12-x,x<1212-x2,x12

d

f(x)=|x|

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given interval range is 0,1.

Lagrange's mean value theorem: If f(x) is representing a polynomial function in x and the two roots of the equation f(x)=0 are x=a and x=b, then there exists at                                                         least one root of the equation f'(x)=0 lying between these values.

                                                      f'(x)=f(b)-f(a)b-aff'12+=12-12-121=0

The function f(x)=12-x,x<1212-x2,x12

The left hand derivative f'12-=12-1-121-0=-1.

The right had derivative 

For the function f(x) given in option 1, we have (LHD at x=12)=-1 and ( RHD at x=12)=0.

So, it is not differentiable at x=12(0,1).

 Lagrange's mean value theorem is not applicable.

Hence, option 1 is the correct option.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
 In [0,1] Lagrange's mean value theorem is not applicable to