Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let λ0  be a real number.  Let α,β  be the roots of the equation  14x231x+3λ=0  and α,γ   be the roots of the equation  35x253x+4λ=0 . Then 3αβ   and 4αγ   are the roots of the equation.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

7x2245x+250=0

b

7x2+245x250=0

c

49x2245x+250=0

d

49x2+245x+250=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Eliminating λ  , we get  α=57
 Here   α+β=3114    β=311457=32  and  α+γ=5335  γ=45
Required equation is x2(3αβ+4αγ)x +(3αβ.4αγ)=0

  x2(107+257)x+25049=0 49x2245x+250=0
           
         
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let λ≠0  be a real number.  Let α,β  be the roots of the equation  14x2−31x+3λ=0  and α,γ   be the roots of the equation  35x2−53x+4λ=0 . Then 3αβ   and 4αγ   are the roots of the equation.