Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α =3i^+j^ and β =2i^-j^+3k^. lf where  β1 is parallel to α β2 is perpendicular to β then  β1 ×β2 is equal to :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3i^-9j^-5k^

b

-3i^-9j^+5k^

c

12-3i^-9j^+5k^

d

123i^-9j^+5k^

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

β¯1=P r is vector β¯ on α¯=β¯·α¯α¯2α¯ =6-110(3i+j)=3i+j2β¯2=β¯-β¯1=2i-j+3k-3i+j2                  =i-3j+6k2β¯1×β¯2=14ijk3101-36=14(i(6)-j(18)+k(-10))            =3i-9j-5k2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring