Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  α=4i^+3j^+5k^ and  β=i^+2j^4k^. Let β1 be parallel to α and  β2  be perpendicular to  α. If β=β1+β2 , then the value of  5β2·(i^+j^+k^) is   

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

11

b

7

c

6

d

9

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given β1  parallel to  α  β1=tα
β2 perpendicular to α β2α=0 
 β=β1+β2
Now do dot product with α on both sides 
αβ=β1α+β2α    (β2α=0)

(4i^+3j^+5k^)(i^+2j^4k^)=(tα)α+0     (β1=tα)     4+620=t(16+9+25)+0      10=t(50)t=15

β1=15(4i^+3j^+5k^)

From  β=β1+β2

β2=ββ1=(i+2j4k)(15(4i+3j+5k))

β2=15(9i^+13j^15k^)  5β2(i^+j^+k^)=9+1315              5β2(i^+j^+k^)=7

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring